توسعه سیستم استنتاج تطبیقی فازی- عصبی در پیش‌بینی سینتیک انتقال جرم طی آب‌زدایی اسمزی- فراصوت سیب

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشیار، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

سابقه و هدف: آب‌زدایی اسمزی فرآیند خیساندن محصولات در محلول آبی حاوی نمک یا قند است که معمولاً برای میوه‌ها و سبزی‌ها استفاده می‌شود. روش آب‌زدایی اسمز- فراصوت می‌تواند کیفیت محصولات آب‌زدایی‌شده را با افزایش سرعت انتقال جرم و حفظ ویژگی‌های ظاهری بهبود بخشد. با وجود اینکه روش‌های آماری و ریاضی بسیاری برای پیش‌بینی سینتیک انتقال جرم در فرآیند آب‌زدایی اسمزی محصولات کشاورزی وجود دارد، اما استفاده از الگوریتم‌های هوشمند با ویژگی‌های مطلوب در سال‌های اخیر پیشرفت قابل ملاحظه‌ای داشته است. هدف اصلی در این تحقیق پیش‌بینی درصد کاهش وزن، درصد جذب مواد جامد و درصد کاهش آب برش‌های سیب آب‌زدایی‌شده به روش اسمزی- فراصوت با استفاده از سیستم استنتاج تطبیقی فازی- عصبی یا انفیس است.
مواد و روش‌ها: فرآیند اسمز- فراصوت با استفاده از دستگاه حمام فراصوت (vCLEAN1-L6، بکر، ایران) انجام شد. برش‌های سیب در حمام فراصوت حاوی محلول‌های ساکارز با بریکس 30، 40 و 50 درجه غوطه‌ور شدند. توان‌های اعمال شده فراصوت برابر 0، 75، و 150 وات، زمان تیمار فراصوت 10، 20، 30، 40، 50 و 60 دقیقه، فرکانس دستگاه 40 کیلوهرتز، و دمای سیستم نیز 50 درجه سلسیوس در نظر گرفته شد. رطوبت برش‌های سیب توسط آون در دمای 105 درجه سلسیوس و در مدت زمان 5 ساعت محاسبه گردید. مدل انفیس با 3 ورودی توان فراصوت (در سه سطح 0، 75 و 150 وات)، غلظت محلول ساکارز (در سه سطح 30، 40 و 50 درجه بریکس) و زمان اعمال فراصوت (در شش زمان 10، 20، 30، 40، 50 و 60 دقیقه) برای پیش‌بینی سینتیک انتقال جرم طی آب‌زدایی اسمزی- فراصوت برش‌های سیب، توسعه یافت.
یافته‌ها: نتایج این پژوهش نشان داد که با افزایش توان فراصوت، زمان اعمال فراصوت و غلظت محلول اسمزی، درصد کاهش وزن نمونه‌ها افزایش یافت که این تغییرات به دلیل خروج بیشتر رطوبت از برش‌های سیب مشاهده گردید. ساختار شبکه انفیس بهینه شامل سه ورودی (توان فراصوت، زمان اعمال فراصوت و غلظت محلول اسمزی)، 48 تابع عضویت ورودی، 16 قانون در لایه میانی، 16 تابع عضویت خروجی و یک پاسخ خروجی (درصد کاهش وزن، درصد جذب مواد جامد و یا درصد کاهش آب) بود. مقادیر ضریب تبیین (r) برای پیش‌بینی پارامترهای درصد کاهش وزن، درصد جذب مواد جامد و درصد کاهش آب با استفاده از الگوریتم خوشه‌بندی کاهشی مبتنی بر انفیس نیز به ترتیب برابر با 952/0، 927/0 و 961/0 محاسبه شد.
نتیجه‌گیری: سیستم انفیس به‌درستی پارامترهای خروجی فرآیند آب‌زدایی اسمزی سیب را تخمین زد؛ لذا استفاده از این روش در ساخت و توسعه سیستم‌های هوشمند کنترل فرآیندهای آب‌زدایی از محصولات کشاورزی توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Development of Adaptive Neuro-Fuzzy Inference System to Predict Mass Transfer Kinetics during Osmotic-Ultrasound Dehydration of Apple

نویسندگان [English]

  • Fakhreddin Salehi 1
  • Rana Cheraghi 2
1 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran,
2 M.Sc student, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Background and objectives: Osmotic dehydration is a process of soaking products in an aqueous solution containing salt or sugar, which is normally applied to fruits and vegetables. The osmotic-ultrasound dehydration method can improve the quality of dehydrated products by increasing mass transfer rate and maintaining appearance properties. Although there are many statistical and mathematical methods for predicting mass transfer kinetics in the process of osmotic dehydration of agricultural products, but, the use of intelligent algorithms with desirable features has made significant progress in recent years. The main goal of this research is to predict the weight reduction percentage, solids gain percentage and water loss percentage of apple slices dehydrated by osmosis-ultrasound method using the adaptive neuro-fuzzy inference system or ANFIS.
Materials and methods: The osmotic-ultrasound process was performed using the ultrasonic bath equipment (vCLEAN1-L6, Backer, Iran). The apple slices were immersed in the ultrasonic bath containing sucrose solutions of 30, 40, and 50 °Brix. The applied ultrasound powers were 0, 75, and 150 W, the ultrasound treatment time was 10, 20, 30, 40, 50, and 60 minutes, the device frequency was 40 kHz, and also, the system temperature was 50 °C. The moisture content of apple slices was calculated by oven at 105°C and during 5 hours. The ANFIS model with 3 inputs of ultrasonic power (at three levels of 0, 75, and 150 W), sucrose solution concentration (at three levels of 30, 40, and 50 °Brix), and ultrasound treatment time (at six times of 10, 20, 30, 40, 50, and 60 min) was developed to predict mass transfer kinetics during osmotic-ultrasound dehydration of apple slices.
Results: The results of this research showed that with increasing the ultrasound power, ultrasound treatment time and osmotic solution concentration, the weight reduction percentage of the samples increased, which these changes was due to high moisture removal from the apple slices. The optimal ANFIS network structure includes three inputs (ultrasonic power, ultrasonic treatment time, and osmotic solution concentration), 48 input membership functions, 16 rules in the middle layer, 16 output membership functions, and an output response (weight reduction percentage, solids gain percentage, or water loss percentage). The coefficient of determination (r) values calculated for predicting weight reduction percentage, solids gain percentage and water loss percentage parameters using the ANFIS-based subtractive clustering algorithm were equal to 0.952, 0.927 and 0.961, respectively.
Conclusion: The ANFIS system accurately estimated the output parameters of osmotic dehydration process of apple well; therefore, it is recommended to use this method in design and development of intelligent control systems for dehydration processes in agricultural products.

کلیدواژه‌ها [English]

  • ANFIS
  • Apple
  • Mass transfer
  • Osmotic dehydration
  • Ultrasound
1.Alabi, K.P., Olalusi, A.P., Olaniyan, A.M., Fadeyibi, A., Gabriel, L.O. 2022. Effects of osmotic dehydration pretreatment on freezing characteristics and quality of frozen fruits and vegetables, Journal of Food Process Engineering. 45: e14037.
2.Salehi, F. 2023. Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review, Food Bioscience. 51: 102307.
3.Sabbaghi, H., Ziaiifar, A.M., Kashani-Nejad, M. 2020. Textural profile analysis (TPA) of dried apple slices using infrared radiation with intermittent heating method, Iranian Food Science and Technology Research Journal. 16: 57-72 (in Persian).
4.Sabbaghi, H., Ziaiifar, A.M., Kashaninejad, M. 2021. Estimation of shrinkage and rehydration in apple slices dried by infrared radiation using intermittent heating method, Journal of Food Research. 31: 35-49 (in Persian).
5.Fong-in, S., Nimitkeatkai, H., Prommajak, T., Nowacka, M. 2021. Ultrasound-assisted osmotic dehydration of litchi: effect of pretreatment on mass transfer and quality attributes during frozen storage, Journal of Food Measurement and Characterization. 15: 3590-3597.
6.Salehi, F. 2020. Physico-chemical properties of fruit and vegetable juices as affected by ultrasound: A review, International Journal of Food Properties. 23: 1748-1765.
7.Azarpazhooh, E., Sharayeei, P., Gheybi, F. 2019. Evaluation of the effects of osmosis pretreatment assisted by ultrasound on the impregnation of phenolic compounds into aloe vera gel and dry product quality, Food Engineering Research. 18: 143-154 (in Persian).
8.Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D., Youssef, M.M. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review, Food Research International. 48: 410-427.
9.Fernandes, F.A., Gallão, M.I., Rodrigues, S. 2008. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration, LWT-Food Science and Technology. 41: 604-610.
10.Salehi, F., Cheraghi, R., Rasouli, M. 2022. Influence of sonication power and time on the osmotic dehydration process efficiency of banana slices, Journal of Food Science and Technology (Iran). 19: 197-206 (in Persian).
11.Meena, N., Prince, M.V., Sreeja, R. 2022. Optimization of process parameters for ultrasound-assisted osmotic dehydration of pineapple slices using response surface methodology, Journal of Food Processing and Preservation.
12.Kroehnke, J., Szadzińska, J., Radziejewska-Kubzdela, E., Biegańska-Marecik, R., Musielak, G., Mierzwa, D. 2021. Osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa) – The influence of ultrasound on process kinetics and product quality, Ultrasonics Sonochemistry. 71: 105377.
13.Salehi, F. 2020. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review, International Journal of Fruit Science. 20: 506-520.
14.Amini, G., Salehi, F., Rasouli, M. 2021. Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio, Journal of Food Processing and Preservation. 45: e15258.
15.Yousefi, A.R. 2017. Estimation of papaw (Carica papaw L.) moisture content using adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm-artificial neural network (GA-ANN), Iranian Food Science and Technology Research Journal. 12: 767-779 (in Persian).
16.Salehi, F., Cheraghi, R., Rasouli, M. 2022. Application of neuro-fuzzy approach for modeling of dehydration process from banana slices by osmosis-ultrasound method, Journal of Food Science and Technology (Iran). 19: 243-253 (in Persian).
17.Azimi-Nejadian, H., Moradi Hassan Abad, M. 2020. Comparison of mathematical models, artificial neural networks and adaptive neuro-fuzzy inference system (ANFIS) in prediction of instantaneous drying curves of potato slices in a microwave dryer, Food Engineering Research. 19: 137-154 (in Persian).
18.Satorabi, M., Salehi, F., Rasouli, M. 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling, International Journal of Fruit Science. 21: 468-480.
19.Okonkwo, C.E., Olaniran, A.F., Adeyi, A.J., Adeyi, O., Ojediran, J.O., Erinle, O.C., Mary, I.Y., Taiwo, A.E. 2022. Neural network and adaptive neuro-fuzzy inference system modeling of the hot air-drying process of orange-fleshed sweet potato, Journal of Food Processing and Preservation. 46: e16312.
20.Salehi, F., Cheraghi, R., Rasouli, M. 2022. Mass transfer kinetics (soluble solids gain and water loss) of ultrasound-assisted osmotic dehydration of apple slices, Scientific Reports. 12: 15392.
21.AOAC 2010. Official methods of analysis, 16th edition, Association of Official Analytical Chemists, Washington DC, USA.
22.Shirazi, R., Bakhshabadi, H., Bazrafshan, M. 2018. Adaptive neuro-fuzzy inference system (ANFIS) application in modeling the oil extraction from peanut with microwave pretreatment, Journal of Food Science and Technology (Iran). 15: 61-72 (in Persian).
23.Jiang, J., Zhang, M., Devahastin, S., Yu, D. 2021. Effect of ultrasound-assisted osmotic dehydration pretreatments on drying and quality characteristics of pulsed fluidized bed microwave freeze-dried strawberries, LWT-Food Science and Technology. 145: 111300.
24.Ochoa-Martinez, C., Ayala-Aponte, A. 2007. Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks, LWT-Food Science and Technology. 40: 638-645.